Appendix

Built from git revision:

Branch
review_hertel
Commit
1b7c714

Changes after submission of thesis:

  • 1b7c714 Remove Github banner on html output at 2020-09-15 21:53:34

    Alabaster theme is not able to handle gitlab refs. Remove the link to
    gitlab page from the navigation bar.
    
  • c825499 Update QR Code at 2020-09-15 21:50:14

    Let QR code point to https://matthias-kastner.de
    
  • bf360e2 Fill-in Chairperson and dates at 2020-09-15 20:18:35

    Update dates of actual thesis defense, submission, and chair.
    
  • 4f15d69 Fix Hamiltonian at 2020-07-26 19:21:55

    Add negative sign to kinetic energy term in Hamiltonian.
    
  • c7b3b43 Fix citation formatting at 2020-07-26 19:11:33

    The citation for Torrens et al. did not display correctly.
    
  • fdf2135 Track Procedure Files For Changes at 2020-03-28 19:19:24

    Automaticall track `*.ipf` and `*.pxp` for changes instead of rebuilding
    the gitlab runner cache.
    
  • 60b597f Optional Change Request by Tobias Hertel at 2020-03-21 19:24:12

    Optional changes suggested by the primary reviewer. These changes mainly
    contribute to readability of some passages.
    
    - include axis label 0,1 in gatevoltage graph
    - update right axis description to not be cut off
    - rewording
      - "low amount" → "small number"
      - "digitalization" → "digitization"
      - clarify diameter and emission wavelength dependence on (6,5) type
      - use *photoluminescece* quantum yield
      - "strong influence" → "strong sensitivity"
    - typography error
      - "ventile" → "valve"
      - "dielectricum" → "dielectric"
      - "Tanahaka" → "Tanaka"
      - "spacial" → "spatial"
    - automatic rebuild of graph macros from stored ipf files
    - clarify diamond and circle symbols in violin plots
    - clarify faulty chiral assignment for spectra.
    - clarify strong emission as the phenomenon visible in the graph
      `analyzed/mkl44/mkl44acnMaps/combined.png`
    
    For a detailed diff, go to the git repo.
    
  • 26dad3d Change Request by Tobias Hertel at 2020-03-21 19:23:00

    Mandatory changes requested by the primary reviewer
    `tobias.hertel@uni-wuerzburg.de`.
    
    - replace dummy label (n,m) in figure
    - add missing radius r to Hamiltonian
    - include unit Debye
    - clarify angle calculation
    
  • 0c73a8e Include Changes Since Submission at 2020-03-21 20:12:11

    To add transparency, any changes to the thesis after submission are
    tracked using git. The repository is at
    https://gitlab.com/ukos-git/nanotubes
    

1

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114ff, 1965. doi:10.1109/n-ssc.2006.4785860.

2

Shigeo Maruyama, Ryosuke Kojima, Yuhei Miyauchi, Shohei Chiashi, and Masamichi Kohno. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chemical Physics Letters, 360(3–4):229–234, 2002. doi:10.1016/S0009-2614(02)00838-2.

3

Rodrigo B. Capaz, Catalin D. Spataru, Sohrab Ismail-Beigi, and Steven G. Louie. Excitons in carbon nanotubes: diameter and chirality trends. physica status solidi (b), 244(11):4016–4020, 2007. doi:10.1002/pssb.200776200.

4

Bo Hou, Cheng Wu, Taiki Inoue, Shohei Chiashi, Rong Xiang, and Shigeo Maruyama. Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5). Carbon, 119:502–510, 2017. doi:10.1016/j.carbon.2017.04.045.

5

Theerapol Thurakitseree, Christian Kramberger, Pei Zhao, Shohei Chiashi, Erik Einarsson, and Shigeo Maruyama. Reduction of single-walled carbon nanotube diameter to sub-nm via feedstock. Physica Status Solidi B: Basic Solid State Physics, 249(12):2404–2407, 2012. doi:10.1002/pssb.201200126.

6

Adrian Nish, Jeong-Yuan Hwang, James Doig, and Robin J. Nicholas. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature nanotechnology, 2(10):640–646, 2007. doi:10.1038/nnano.2007.290.

7

Darryl Fong and Alex Adronov. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chemical science, 8(11):7292–7305, 2017. doi:10.1039/C7SC02942J.

8

Aaron D. Franklin, Mathieu Luisier, Shu-Jen Han, George Tulevski, Chris M. Breslin, Lynne Gignac, Mark S. Lundstrom, and Wilfried Haensch. Sub-10 nm carbon nanotube transistor. Nano Letters, 12(2):758–762, 2012. doi:10.1021/nl203701g.

9

Max M. Shulaker, Gage Hills, Nishant Patil, Hai Wei, Hong-Yu Chen, H-S Philip Wong, and Subhasish Mitra. Carbon nanotube computer. Nature, 501(7468):526–530, 2013. doi:10.1038/nature12502.

10

Oleg N. Kalugin, Vitaly V. Chaban, Valentin V. Loskutov, and Oleg V. Prezhdo. Uniform diffusion of acetonitrile inside carbon nanotubes favors supercapacitor performance. Nano Letters, 8(8):2126–2130, 2008. doi:10.1021/nl072976g.

11

Ardemis A. Boghossian, Jingqing Zhang, Paul W. Barone, Nigel F. Reuel, Jong-Ho Kim, Daniel A. Heller, Jin-Ho Ahn, Andrew J. Hilmer, Alina Rwei, Jyoti R. Arkalgud, Cathy T. Zhang, and Michael S. Strano. Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications. ChemSusChem, 4(7):848–863, 2011. doi:10.1002/cssc.201100070.

12

Alexander Högele, Christophe Galland, Martin Winger, and Atac Imamoğlu. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Physical review letters, 100(21):217401, 2008. doi:10.1103/PhysRevLett.100.217401.

13

Matthias S. Hofmann, Jan T. Gluckert, Jonathan Noe, Christian Bourjau, Raphael Dehmel, and Alexander Hogele. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nature nanotechnology, 8(7):502–505, 2013. doi:10.1038/nnano.2013.119.

14

Thomas Mueller, Megumi Kinoshita, Mathias Steiner, Vasili Perebeinos, Ageeth A. Bol, Damon B. Farmer, and Phaedon Avouris. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nature nanotechnology, 5(1):27–31, 2010. doi:10.1038/nnano.2009.319.

15

Noémie Danné, Antoine G. Godin, Zhenghong Gao, Juan A. Varela, Laurent Groc, Brahim Lounis, and Laurent Cognet. Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications. ACS Photonics, 5(2):359–364, 2018. doi:10.1021/acsphotonics.7b01311.

16

Xiaowei He, Nicolai F. Hartmann, Xuedan Ma, Younghee Kim, Rachelle Ihly, Jeffrey L. Blackburn, Weilu Gao, Junichiro Kono, Yohei Yomogida, Atsushi Hirano, Takeshi Tanaka, Hiromichi Kataura, Han Htoon, and Stephen K. Doorn. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nature Photonics, 11(9):577–582, 2017. doi:10.1038/nphoton.2017.119.

17

Xiaowei He, Brendan J. Gifford, Nicolai F. Hartmann, Rachelle Ihly, Xuedan Ma, Svetlana V. Kilina, Yue Luo, Kamran Shayan, Stefan Strauf, Jeffrey L. Blackburn, Sergei Tretiak, Stephen K. Doorn, and Han Htoon. Low-temperature single carbon nanotube spectroscopy of sp3 quantum defects. ACS nano, 11(11):10785–10796, 2017. doi:10.1021/acsnano.7b03022.

18

X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin. Carbon nanotubes as emerging quantum-light sources. Nature materials, 17(8):663–670, 2018. doi:10.1038/s41563-018-0109-2.

19

A. Nikitin, H. Ogasawara, D. Mann, R. Denecke, Z. Zhang, H. Dai, K. Cho, and A. Nilsson. Hydrogenation of single-walled carbon nanotubes. Physical review letters, 95(22):225507, 2005. doi:10.1103/PhysRevLett.95.225507.

20

Ulrich Hofmann. Adsorptionsvermögen, katalytische aktivität und kristalline struktur des kohlenstoffs. Angewandte Chemie, 44(41):841–845, 1931. doi:10.1002/ange.19310444102.

21

Ulrich Hofmann and Edeltraut Groll. Durch thermischen zerfall von benzin im gasraum dargestellter kohlenstoff. Berichte der deutschen chemischen Gesellschaft (A and B Series), 65(8):1257–1267, 1932. doi:10.1002/cber.19320650804.

22

K. A. Hofmann and Curt Röchling. Die glanzkohle, eine besondere form des krystallinen kohlenstoffs. Berichte der deutschen chemischen Gesellschaft (A and B Series), 56(8):2071–2076, 1923. doi:10.1002/cber.19230560863.

23

K. A. Hofmann and Ulrich Hofmann. Der glanzkohlenstoff als anfang der schwarzen krystallinen kohlenstoffreihe. Berichte der deutschen chemischen Gesellschaft (A and B Series), 59(10):2433–2444, 1926. doi:10.1002/cber.19260591002.

24

Karl Fredenhagen and Gustav Cadenbach. Die bindung von kalium durch kohlenstoff. Zeitschrift fr anorganische und allgemeine Chemie, 158(1):249–263, 1926. doi:10.1002/zaac.19261580122.

25

L. Persichetti, M. De Seta, A. M. Scaparro, V. Miseikis, A. Notargiacomo, A. Ruocco, A. Sgarlata, M. Fanfoni, F. Fabbri, C. Coletti, and L. Di Gaspare. Driving with temperature the synthesis of graphene films and nanoribbons on ge(110). URL: http://arxiv.org/pdf/1906.01571v1.

26

nobelprize.org. The nobel prize in physics 1986. 1986. URL: http://www.nobelprize.org/nobel_prizes/physics/laureates/1986.

27

M. v. Ardenne and U. Hofmann. Elektronenmikroskopische und röntgenographische untersuchungen über die struktur von rußen. Zeitschrift für Physikalische Chemie, 50B(1):1–12, 1941. doi:10.1515/zpch-1941-5002.

28

Marc Monthioux and Vladimir L. Kuznetsov. Who should be given the credit for the discovery of carbon nanotubes? Carbon, 44(9):1621–1623, 2006. doi:10.1016/j.carbon.2006.03.019.

29

Л. В. Радушкевич and В. М. Лункянович. О структуре углерода, образующегося при термическом разложении окиси углерода на железном контакте: about the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate. Журн. физ. химии (ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ), 26:88–95, 1952. URL: https://nanotube.msu.edu/HSS/2006/4.

30

R. Iley and H. L. Riley. 274. the deposition of carbon on vitreous silica. Journal of the Chemical Society (Resumed), pages 1362, 1948. doi:10.1039/JR9480001362.

31

W. R. Davis, R. J. Slawson, and G. R. Rigby. An unusual form of carbon. Nature, 171(4356):756, 1953. doi:10.1038/171756a0.

32

P. L. Walker, J. F. Rakszawski, and G. R. Imperial. Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysts.i. properties of carbon formed. The Journal of Physical Chemistry, 63(2):133–140, 1959. doi:10.1021/j150572a002.

33

Roger Bacon. Growth, structure, and properties of graphite whiskers. Journal of Applied Physics, 31(2):283–290, 1960. doi:10.1063/1.1735559.

34

H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and Smalley, R. E. C60: buckminsterfullerene. Nature, 318(6042):162–163, 1985. doi:10.1038/318162a0.

35

Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 354(6348):56–58, 1991. doi:10.1038/354056a0.

36

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of chiral graphene tubules. Applied Physics Letters, 60(18):2204–2206, 1992. doi:10.1063/1.107080.

37

Sumio Iijima and Toshinari Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430):603–605, 1993. doi:10.1038/363603a0.

38

Tsuneya Ando. Excitons in carbon nanotubes. Journal of the Physics Society Japan, 66(4):1066–1073, 1997. doi:10.1143/JPSJ.66.1066.

39

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, and C. Lienau. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Nano Letters, 72(24):6680, 2005. doi:10.1103/PhysRevB.72.241402.

40

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba. Optical properties of single-wall carbon nanotubes. Synthetic Metals, 103(1-3):2555–2558, 1999. doi:10.1016/S0379-6779(98)00278-1.

41

Kaihui Liu, Jack Deslippe, Fajun Xiao, Rodrigo B. Capaz, Xiaoping Hong, Shaul Aloni, Alex Zettl, Wenlong Wang, Xuedong Bai, Steven G. Louie, Enge Wang, and Feng Wang. An atlas of carbon nanotube optical transitions. Nature nanotechnology, 7(5):325–329, 2012. doi:10.1038/nnano.2012.52.

42

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and Smalley, R. E. Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 243(1-2):49–54, 1995. doi:10.1016/0009-2614(95)00825-O.

43

H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, and Y. Achiba. Diameter control of single-walled carbon nanotubes. Carbon, 38(11-12):1691–1697, 2000. doi:10.1016/S0008-6223(00)00090-7.

44

Sivaram Arepalli. Laser ablation process for single-walled carbon nanotube production. Journal of Nanoscience and Nanotechnology, 4(4):317–325, 2004. doi:10.1166/jnn.2004.072.

45

C. Journet and P. Bernier. Production of carbon nanotubes. Applied Physics A: Materials Science & Processing, 67(1):1–9, 1998. doi:10.1007/s003390050731.

46

Yiming Li, David Mann, Marco Rolandi, Woong Kim, Ant Ural, Steven Hung, Ali Javey, Jien Cao, Dunwei Wang, Erhan Yenilmez, Qian Wang, James F. Gibbons, Yoshio Nishi, and Hongjie. Dai. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced cvd method. Nano Letters, 4(2):317–321, 2004. doi:10.1021/nl035097c.

47

Yuhei Miyauchi. Photoluminescence studies on exciton photophysics in carbon nanotubes. Journal of Materials Chemistry C, 1(40):6499, 2013. doi:10.1039/c3tc00947e.

48

Nasiba Abdurakhmanova, A. Mueller, S. Stepanow, S. Rauschenbach, M. Jansen, K. Kern, and K. Yu Amsharov. Bottom up fabrication of (9, 0) zigzag and (6, 6) armchair carbon nanotube end-caps on the rh(1 1 1) surface. Carbon, 84:444–447, 2015. doi:10.1016/j.carbon.2014.12.038.

49

Chin Li Cheung, Andrea Kurtz, Hongkun Park, and Charles M. Lieber. Diameter-controlled synthesis of carbon nanotubes. Journal of Physical Chemistry B, 106(10):2429–2433, 2002. doi:10.1021/jp0142278.

50

Konstantin Yu. Amsharov. Combinatorial approach for the synthesis of precursors for chirality-controlled synthesis of swcnts. Physica Status Solidi B: Basic Solid State Physics, 252(11):2466–2471, 2015. doi:10.1002/pssb.201552189.

51

Chiang, I. W., Brinson, B. E., Huang, A. Y., Willis, P. A., Bronikowski, M. J., Margrave, J. L., Smalley, R. E., and Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (swnts) obtained from the gas-phase decomposition of co (hipco process). Journal of Physical Chemistry B, 105(35):8297–8301, 2001. doi:10.1021/jp0114891.

52

Hongjie Dai, Andrew G. Rinzler, Pasha Nikolaev, Andreas Thess, Daniel T. Colbert, and Richard E. Smalley. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters, 260(3,4):471–475, 1996. doi:10.1016/0009-2614(96)00862-7.

53

Jing Kong, Alan M. Cassell, and Hongjie. Dai. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 292(4,5,6):567–574, 1998. doi:10.1016/S0009-2614(98)00745-3.

54

J.-F. Colomer, C. Stephan, S. Lefrant, G. van Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, and Nagy, J. B. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (ccvd) method. Chemical Physics Letters, 317(1,2):83–89, 2000. doi:10.1016/S0009-2614(99)01338-X.

55

Jason H. Hafner, Michael J. Bronikowski, Bobak R. Azamian, Pavel Nikolaev, Andrew G. Rinzler, Daniel T. Colbert, Ken A. Smith, and Richard E. Smalley. Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters, 296(1,2):195–202, 1998. doi:10.1016/S0009-2614(98)01024-0.

56

Gayatri Keskar, Rahul Rao, Jian Luo, Joan Hudson, Jia Chen, and Apparao M. Rao. Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors. Chemical Physics Letters, 412(4-6):269–273, 2005. doi:10.1016/j.cplett.2005.07.007.

57

Mukul Kumar and Yoshinori Ando. Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon, 43(3):533–540, 2005. doi:10.1016/j.carbon.2004.10.014.

58

Rahul Sen, A. Govindaraj, and C.N.R. Rao. Carbon nanotubes by the metallocene route. Chemical Physics Letters, 267(3-4):276–280, 1997. doi:10.1016/S0009-2614(97)00080-8.

59

Yan Zhang, Weiwei Zhou, Zhong Jin, Li Ding, Zhiyong Zhang, Xuelei Liang, and Yan Li. Direct growth of single-walled carbon nanotubes without metallic residues by using lead as a catalyst. Chemistry of Materials, 20(24):7521–7525, 2008. doi:10.1021/cm801024c.

60

Dongning Yuan, Lei Ding, Haibin Chu, Yiyu Feng, Thomas P. McNicholas, and Jie Liu. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Letters, 8(8):2576–2579, 2008. doi:10.1021/nl801007r.

61

Feng Yang, Xiao Wang, Daqi Zhang, Juan Yang, LuoDa, Ziwei Xu, Jiake Wei, Jian-Qiang Wang, Zhi Xu, Fei Peng, Xuemei Li, Ruoming Li, Yilun Li, Meihui Li, Xuedong Bai, Feng Ding, and Yan Li. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature, 510(7506):522–524, 2014. doi:10.1038/nature13434.

62

Codruta Zoican Loebick, Salim Derrouiche, Nebojsa Marinkovic, Chuan Wang, Frank Hennrich, Manfred M. Kappes, Haller, Gary. L., and Pfefferle, Lisa. D. Effect of manganese addition to the co-mcm-41 catalyst in the selective synthesis of single wall carbon nanotubes. The Journal of Physical Chemistry C, 113(52):21611–21620, 2009. URL: http://dx.doi.org/10.1021/jp908262u, doi:10.1021/jp908262u.

63

Codruta Zoican Loebick, Ramakrishna Podila, Jason Reppert, Joel Chudow, Fang Ren, Gary L. Haller, Apparao M. Rao, and Lisa D. Pfefferle. Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes. Journal of the American Chemical Society, 132(32):11125–11131, 2010. doi:10.1021/ja102011h.

64

Yuhei Miyauchi, Shohei Chiashi, Yoichi Murakami, Yasunori Hayashida, and Shigeo Maruyama. Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chemical Physics Letters, 387(1–3):198–203, 2004. doi:10.1016/j.cplett.2004.01.116.

65

Lianxi Zheng, B. C. Satishkumar, Pingqi Gao, and Qing Zhang. Kinetics studies of ultralong single-walled carbon nanotubes. The Journal of Physical Chemistry C, 113(25):10896–10900, 2009. doi:10.1021/jp901640d.

66

Sergei M. Bachilo, Leandro Balzano, Jose E. Herrera, Francisco Pompeo, Daniel E. Resasco, and Weisman, R. Bruce. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. Journal of the American Chemical Society, 125(37):11186–11187, 2003. doi:10.1021/ja036622c.

67

Kehang Cui, Akihito Kumamoto, Rong Xiang, Hua An, Benjamin Wang, Taiki Inoue, Shohei Chiashi, Yuichi Ikuhara, and Shigeo Maruyama. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale, 8(3):1608–1617, 2016. doi:10.1039/C5NR06007A.

68

Young Lee, Seong Kim, and David Tománek. Catalytic growth of single-wall carbon nanotubes: an ab initio study. Physical Review Letters, 78(12):2393–2396, 1997. doi:10.1103/PhysRevLett.78.2393.

69

Stephanie Reich, Lan Li, and John Robertson. Control the chirality of carbon nanotubes by epitaxial growth. Chemical Physics Letters, 421(4-6):469–472, 2006. doi:10.1016/j.cplett.2006.01.110.

70

Muhammad Mansoor, Muhammad Shahid, and Amir Habib. Optimization of ethanol flow rate for improved catalytic activity of ni particles to synthesize mwcnts using a cvd reactor. Materials Research, 17(3):739–746, 2014. doi:10.1590/S1516-14392014005000070.

71

Weiwei Zhou, Zuoyan Han, Jinyong Wang, Yan Zhang, Zhong Jin, Xiao Sun, Yawen Zhang, Chunhua Yan, and Yan Li. Copper catalyzing growth of single-walled carbon nanotubes on substrates // copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 6(12):2987–2990, 2006. doi:10.1021/nl061871v.

72

Maoshuai He, Alexander I. Chernov, Pavel V. Fedotov, Elena D. Obraztsova, Jani Sainio, Emma Rikkinen, Hua Jiang, Zhen Zhu, Ying Tian, Esko I. Kauppinen, Marita Niemelä, and Krause, A. Outi I. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. Journal of the American Chemical Society, 132(40):13994–13996, 2010. URL: http://dx.doi.org/10.1021/ja106609y, doi:10.1021/ja106609y.

73

Xiaolin Li, Xiaomin Tu, Sasa Zaric, Kevin Welsher, Won Seok Seo, Wei Zhao, and Hongjie Dai. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. Journal of the American Chemical Society, 129(51):15770–15771, 2007. URL: http://dx.doi.org/10.1021/ja077886s, doi:10.1021/ja077886s.

74

Theerapol Thurakitseree, Erik Einarsson, Rong Xiang, Pei Zhao, Shinya Aikawa, Shohei Chiashi, Junichiro Shiomi, and Shigeo Maruyama. Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 12(1):370–376, 2012. doi:10.1166/jnn.2012.5398.

75

Bilu Liu, Wencai Ren, Shisheng Li, Chang Liu, and Hui-Ming Cheng. High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a copt bimetallic catalyst. Chemical Communications, 48(18):2409–2411, 2012. doi:10.1039/C2CC16491D.

76

Sreekar Bhaviripudi, Ervin Mile, Stephen A. Steiner, Aurea T. Zare, Mildred S. Dresselhaus, Angela M. Belcher, and Jing Kong. Cvd synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. Journal of the American Chemical Society, 129(6):1516–1517, 2007. doi:10.1021/ja0673332.

77

B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco. Controlled production of single-wall carbon nanotubes by catalytic decomposition of co on bimetallic co–mo catalysts. Chemical Physics Letters, 317(3–5):497–503, 2000. doi:10.1016/S0009-2614(99)01379-2.

78

Matthias Kastner, Sabine Stahl, Ivonne Vollert, Christian Loi, Nicolas Rühl, Tobias Hertel, and Friedrich Schöppler. A comparison of raman and photoluminescence spectra for the assessment of single-wall carbon nanotube sample quality. Chemical Physics Letters, 635:245–249, 2015. doi:10.1016/j.cplett.2015.06.076.

79

Hisayoshi Oshima, Yoshinobu Suzuki, Tomohiro Shimazu, and Shigeo Maruyama. Novel and simple synthesis method for submillimeter long vertically aligned single-walled carbon nanotubes by no-flow alcohol catalytic chemical vapor deposition. Japanese Journal of Applied Physics, 47(4):1982–1984, 2008. doi:10.1143/JJAP.47.1982.

80

L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, and Y. T. Zhu. Ultralong single-wall carbon nanotubes. Nature materials, 3(10):673–676, 2004. doi:10.1038/nmat1216.

81

David Bom, Rodney Andrews, David Jacques, John Anthony, Bailin Chen, Mark S. Meier, and John P. Selegue. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Letters, 2(6):615–619, 2002. doi:10.1021/nl020297u.

82

Li Qingwen, Yan Hao, Ye Yinchun, Zhang Jin, and Liu Zhongfan. Defect location of individual single-walled carbon nanotubes with a thermal oxidation strategy. Journal of Physical Chemistry B, 106(43):11085–11088, 2002. doi:10.1021/jp026512c.

83

Michael V. Osier, Andrew J. Pakstis, Himla Soodyall, David Comas, David Goldman, Adekunle Odunsi, Friday Okonofua, Josef Parnas, Leslie O. Schulz, Jaume Bertranpetit, Batsheva Bonne-Tamir, Ru-Band Lu, Judith R. Kidd, and Kenneth K. Kidd. A global perspective on genetic variation at the adh genes reveals unusual patterns of linkage disequilibrium and diversity. American journal of human genetics, 71(1):84–99, 2002. doi:10.1086/341290.

84

Bo Hou, Rong Xiang, Taiki Inoue, Erik Einarsson, Shohei Chiashi, Junichiro Shiomi, Akira Miyoshi, and Shigeo Maruyama. Decomposition of ethanol and dimethyl ether during chemical vapor deposition synthesis of single-walled carbon nanotubes. Japanese Journal of Applied Physics, 50(6R):065101, 2011. doi:10.1143/JJAP.50.065101.

85

Matthias J. Kastner. Herstellung halbleitender Kohlenstoffnanoröhren durch Gasphasenabscheidungsprozesse und spektroskopische Charakterisierung. PhD thesis, Uni Würzburg, Würzburg, 2014.

86

Rong Xiang, Bo Hou, Erik Einarsson, Pei Zhao, Sivasankaran Harish, Kenichi Morimoto, Yuhei Miyauchi, Shohei Chiashi, Zikang Tang, and Shigeo Maruyama. Carbon atoms in ethanol do not contribute equally to formation of single-walled carbon nanotubes. ACS Nano, 7(4):3095–3103, 2013. doi:10.1021/nn305180g.

87

Tomoya Oguri, Kohei Shimamura, Yasushi Shibuta, Fuyuki Shimojo, and Shu Yamaguchi. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic cvd technique: ab initio molecular dynamics simulation. Chemical Physics Letters, 595-596:185–191, 2014. doi:10.1016/j.cplett.2014.02.002.

88

Kaoru Hisama, Ryo Yoshikawa, Teppei Matsuo, Takuya Noguchi, Tomoya Kawasuzuki, Shohei Chiashi, and Shigeo Maruyama. Growth analysis of single-walled carbon nanotubes based on interatomic potentials by molecular dynamics simulation. The Journal of Physical Chemistry C, 122(17):9648–9653, 2018. doi:10.1021/acs.jpcc.7b12687.

89

Yoshifumi Izu, Junichiro Shiomi, Yoshiteru Takagi, Susumu Okada, and Shigeo Maruyama. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template. ACS Nano, 4(8):4769–4775, 2010. doi:10.1021/nn100461r.

90

Phillip Vinten, Paul Marshall, Jacques Lefebvre, and Paul Finnie. Thermodynamic and energetic effects on the diameter and defect density in single-walled carbon nanotube synthesis. The Journal of Physical Chemistry C, 117(7):3527–3536, 2013. doi:10.1021/jp308672a.

91

W. Zhou, Y.H Ooi, R. Russo, P. Papanek, D.E Luzzi, J.E Fischer, M.J Bronikowski, P.A Willis, and R.E Smalley. Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of co. Chemical Physics Letters, 350(1-2):6–14, 2001. doi:10.1016/S0009-2614(01)01237-4.

92

Husnu Emrah Unalan and Manish Chhowalla. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology, 16(10):2153–2163, 2005. doi:10.1088/0957-4484/16/10/031.

93

Charlotte T.M. Kwok, Brandon J. Reizman, Daniel E. Agnew, Gurjit S. Sandhu, J. Weistroffer, Michael S. Strano, and Edmund G. Seebauer. Temperature and time dependence study of single-walled carbon nanotube growth by catalytic chemical vapor deposition. Carbon, 48(4):1279–1288, 2010. doi:10.1016/j.carbon.2009.11.053.

94

P. Vinten, J. Lefebvre, and P. Finnie. Kinetic critical temperature and optimized chemical vapor deposition growth of carbon nanotubes. Chemical Physics Letters, 469(4-6):293–297, 2009. doi:10.1016/j.cplett.2008.12.095.

95

Nick M. Marinov. A detailed chemical kinetic model for high temperature ethanol oxidation. International Journal of Chemical Kinetics, 31(3):183–220, 1999. doi:10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X.

96

Andreas Eisenhut. Cvd-wachstum halbleitender swnts auf si-oberflächen und bestimmung der swnt-durchmesserverteilung: bachelorarbeit. 2015.

97

Michael J. O’Connell, Sergei M. Bachilo, Chad B. Huffman, Valerie C. Moore, Michael S. Strano, Erik H. Haroz, Kristy L. Rialon, Peter J. Boul, William H. Noon, Carter Kittrell, Jianpeng Ma, Robert H. Hauge, Weisman, R. Bruce, and Richard E. Smalley. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297(5581):593–596, 2002. doi:10.1126/science.1072631.

98

Stefan Kupka. Synthese von kohlenstoffnanoröhren: diplomarbeit. 2012.

99

Yoshikazu Homma, Yoshiro Kobayashi, Toshio Ogino, Daisuke Takagi, Roichi Ito, Yung Joon Jung, and Pulickel M. Ajayan. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. Journal of Physical Chemistry B, 107(44):12161–12164, 2003. doi:10.1021/jp0353845.

100

Shohei Chiashi, Yuta Saito, Takashi Kato, Satoru Konabe, Susumu Okada, Takahiro Yamamoto, and Yoshikazu Homma. Confinement effect of sub-nanometer difference on melting point of ice-nanotubes measured by photoluminescence spectroscopy. ACS nano, 13(2):1177–1182, 2019. doi:10.1021/acsnano.8b06041.

101

Bhupender S. Chhikara, Santosh K. Misra, and Santanu Bhattacharya. Cnt loading into cationic cholesterol suspensions show improved dna binding and serum stability and ability to internalize into cancer cells. Nanotechnology, 23(6):065101, 2012. doi:10.1088/0957-4484/23/6/065101.

102

Michael S. Arnold, Samuel I. Stupp, and Mark C. Hersam. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Letters, 5(4):713–718, 2005. doi:10.1021/nl050133o.

103

Alexander A. Green, Matthew C. Duch, and Mark C. Hersam. Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Research, 2(1):69–77, 2009. doi:10.1007/s12274-009-9006-y.

104

Daniel Zuleeg. Aufbau, Programmierung und Charakterisierung einer PLE-Spektrometrieanlage. PhD thesis, Uni Würzburg, Würzburg, 2015.

105

Jae-Yel Yi and J. Bernholc. Atomic structure and doping of microtubules. Physical Review B, 47(3):1708–1711, 1993. doi:10.1103/PhysRevB.47.1708.

106

Paola Ayala, Raul Arenal, Annick Loiseau, Angel Rubio, and Thomas Pichler. The physical and chemical properties of heteronanotubes. Reviews of Modern Physics, 82(2):1843–1885, 2010. doi:10.1103/RevModPhys.82.1843.

107

Gordana Ciric-Marjanovic, Igor Pasti, and Slavko. Mentus. One-dimensional nitrogen-containing carbon nanostructures. Progress in Materials Science, 69:61–182, 2015. doi:10.1016/j.pmatsci.2014.08.002.

108

Kuiyang Jiang, Linda S. Schadler, Richard W. Siegel, Xinjie Zhang, Haifeng Zhang, and Mauricio Terrones. Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. Journal of Materials Chemistry, 14(1):37, 2004. doi:10.1039/B310359E.

109

Lain-Jong Li, M. Glerup, A. N. Khlobystov, J. G. Wiltshire, J.-L. Sauvajol, R. A. Taylor, and R. J. Nicholas. The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. Carbon, 44(13):2752–2757, 2006. doi:10.1016/j.carbon.2006.03.037.

110

Joseph G. Wiltshire, Lain-Jong Li, Laura M. Herz, Robin J. Nicholas, Marianne Glerup, Jean-Louis Sauvajol, and Andrei N. Khlobystov. Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes. Physical Review B, 2005. doi:10.1103/PhysRevB.72.205431.

111

M. Glerup, J. Steinmetz, D. Samaille, O. Stéphan, S. Enouz, A. Loiseau, S. Roth, and P. Bernier. Synthesis of n-doped swnt using the arc-discharge procedure. Chemical Physics Letters, 387(1-3):193–197, 2004. doi:10.1016/j.cplett.2004.02.005.

112

F. Villalpando-Paez, A. Zamudio, A. L. Elias, H. Son, E. B. Barros, S. G. Chou, Y. A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, and M. S. Dresselhaus. Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chemical Physics Letters, 424(4-6):345–352, 2006. doi:10.1016/j.cplett.2006.04.074.

113

Antal A. Koós, Frank Dillon, Ekaterina A. Obraztsova, Alison Crossley, and Nicole Grobert. Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon, 48(11):3033–3041, 2010. doi:10.1016/j.carbon.2010.04.026.

114

M. Reyes-Reyes, N. Grobert, R. Kamalakaran, T. Seeger, D. Golberg, M. Rühle, Y. Bando, H. Terrones, and M. Terrones. Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chemical Physics Letters, 396(1-3):167–173, 2004. doi:10.1016/j.cplett.2004.07.125.

115

Hyun Chul Choi, Jeunghee Park, and Bongsoo Kim. Distribution and structure of n atoms in multiwalled carbon nanotubes using variable-energy x-ray photoelectron spectroscopy. The journal of physical chemistry. B, 109(10):4333–4340, 2005. doi:10.1021/jp0453109.

116

P. Ayala, A. Grüneis, T. Gemming, B. Büchner, M. H. Rümmeli, D. Grimm, J. Schumann, R. Kaltofen, Freire Jr., F. L., Filho, H. D. Fonseca, and T. Pichler. Influence of the catalyst hydrogen pretreatment on the growth of vertically aligned nitrogen-doped carbon nanotubes. Chemistry of Materials, 19(25):6131–6137, 2007. doi:10.1021/cm0715592.

117

Paola Ayala, Alexander Grueneis, Thomas Gemming, Daniel Grimm, Christian Kramberger, Mark H. Ruemmeli, Freire, Fernando L. , Jr., Hans Kuzmany, Rudolf Pfeiffer, Amelia Barreiro, Bernd Buechner, and Thomas. Pichler. Tailoring n-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock. The Journal of Physical Chemistry C, 111(7):2879–2884, 2007. doi:10.1021/jp0658288.

118

E.M.M. Ibrahim, Vyacheslav O. Khavrus, Albrecht Leonhardt, Silke Hampel, Steffen Oswald, Mark H. Rümmeli, and Bernd Büchner. Synthesis, characterization, and electrical properties of nitrogen-doped single-walled carbon nanotubes with different nitrogen content. Diamond and Related Materials, 19(10):1199–1206, 2010. doi:10.1016/j.diamond.2010.05.008.

119

Theerapol Thurakitseree, Christian Kramberger, Akihito Kumamoto, Shohei Chiashi, Erik Einarsson, and Shigeo Maruyama. Reversible diameter modulation of single-walled carbon nanotubes by acetonitrile-containing feedstock. ACS Nano, 7(3):2205–2211, 2013. doi:10.1021/nn3051852.

120

V. Krstić, Rikken, G. L. J. A, P. Bernier, S. Roth, and M. Glerup. Nitrogen doping of metallic single-walled carbon nanotubes:n-type conduction and dipole scattering. Europhysics Letters (EPL), 77(3):37001, 2007. doi:10.1209/0295-5075/77/37001.

121

S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba. Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy. Physical Review B, 60(19):13339–13342, 1999. doi:10.1103/PhysRevB.60.13339.

122

Holger Hartleb, Florian Späth, and Tobias Hertel. Evidence for strong electronic correlations in the spectra of gate-doped single-wall carbon nanotubes. ACS Nano, 9(10):10461–10470, 2015. doi:10.1021/acsnano.5b04707.

123

Julia Heitmüller. Spektroelektrochemische untersuchungen an kohlenstoffnanorohrsuspensionen: bachelorarbeit. 2016.

124

Timothy J. McDonald, Chaiwat Engtrakul, Marcus Jones, Garry Rumbles, and Michael J. Heben. Kinetics of pl quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. The journal of physical chemistry. B, 110(50):25339–25346, 2006. doi:10.1021/jp065281x.

125

Yasuhiko Tanaka, Yasuhiko Hirana, Yasuro Niidome, Koichiro Kato, Susumu Saito, and Naotoshi Nakashima. Experimentally determined redox potentials of individual (n,m) single-walled carbon nanotubes. Angewandte Chemie International Edition in English, 48(41):7655–7659, 2009. doi:10.1002/anie.200902468.

126

Yasuhiko Hirana, Gergely Juhasz, Yuhei Miyauchi, Shinichiro Mouri, Kazunari Matsuda, and Naotoshi Nakashima. Empirical prediction of electronic potentials of single-walled carbon nanotubes with a specific chirality (n,m). Scientific reports, 3:2959, 2013. doi:10.1038/srep02959.

127

Liu Hong, Shinichiro Mouri, Yuhei Miyauchi, Kazunari Matsuda, and Naotoshi Nakashima. Redox properties of a single (7,5)single-walled carbon nanotube determined by an in situ photoluminescence spectroelectrochemical method. Nanoscale, 6(21):12798–12804, 2014. doi:10.1039/c4nr03945a.

128

Holger Edgar Heinz Erich Hartleb. Spektroelektrochemische Untersuchung von halbleitenden Kohlenstoffnanoröhren. PhD thesis, Uni Würzburg, Würzburg, 2015.

129

Yonghai Cao, Hao Yu, Jun Tan, Feng Peng, Hongjuan Wang, Jing Li, Wenxu Zheng, and Ning-Bew Wong. Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon, 57:433–442, 2013. doi:10.1016/j.carbon.2013.02.016.

130

Theerapol Thurakitseree, Christian Kramberger, Pei Zhao, Shinya Aikawa, Sivasankaran Harish, Shohei Chiashi, Erik Einarsson, and Shigeo Maruyama. Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes. Carbon, 50(7):2635–2640, 2012. doi:10.1016/j.carbon.2012.02.023.

131

Souza Filho, A. G., A. Jorio, Ge. G. Samsonidze, G. Dresselhaus, Pimenta, M. A., M. S. Dresselhaus, Anna K. Swan, M. S. Ünlü, B. B. Goldberg, and R. Saito. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Physical Review B, 2003. doi:10.1103/PhysRevB.67.035427.

132

Tobias Hertel, Sabine Himmelein, Thomas Ackermann, Dominik Stich, and Jared Crochet. Diffusion limited photoluminescence quantum yields in 1-d semiconductors: single-wall carbon nanotubes. ACS Nano, 4(12):7161–7168, 2010. doi:10.1021/nn101612b.

133

Saunab Ghosh, Sergei M. Bachilo, and Weisman, R. Bruce. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature nanotechnology, 5(6):443–450, 2010. doi:10.1038/nnano.2010.68.

134

Shin Young Kim, Jinyoung Lee, Chan Woong Na, Jeunghee Park, Kwanyong Seo, and Bongsoo Kim. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. Chemical Physics Letters, 413(4-6):300–305, 2005. doi:10.1016/j.cplett.2005.07.093.

135

Christian Kramberger, Theerapol Thurakitseree, Erik Einarsson, Akito Takashima, Toyohiko Kinoshita, Takayuki Muro, and Shigeo Maruyama. From isotope labeled ch₃cn to n₂ inside single-walled carbon nanotubes. Nanoscale, 6(3):1525–1528, 2014. doi:10.1039/c3nr04729f.

136

A. Ishii, M. Yoshida, and Y. K. Kato. Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes. Physical Review B, 2015. doi:10.1103/PhysRevB.91.125427.

137

Carsten Georgi, Miriam Böhmler, Huihong Qian, Lukas Novotny, and Achim Hartschuh. Probing exciton propagation and quenching in carbon nanotubes with near-field optical microscopy. Physica Status Solidi B: Basic Solid State Physics, 246(11-12):2683–2688, 2009. doi:10.1002/pssb.200982306.

138

Juan G. Duque, Matteo Pasquali, Laurent Cognet, and Brahim Lounis. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes. ACS nano, 3(8):2153–2156, 2009. doi:10.1021/nn9003956.

139

Dmitri A. Tsyboulski, Sergei M. Bachilo, and Weisman, R. Bruce. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Letters, 5(5):975–979, 2005. doi:10.1021/nl050366f.

140

Sidney Redner. A Guide To First-Passage Processes. Cambridge University Press, Cambridge, 2001. ISBN 9780511606014. doi:10.1017/CBO9780511606014.

141

Mitchell D. Anderson, Yee-fang Xiao, and James M. Fraser. First-passage theory of exciton population loss in single-walled carbon nanotubes reveals micron-scale intrinsic diffusion lengths. Physical Review B, 2013. doi:10.1103/PhysRevB.88.045420.

142

Friedrich Schöppler, Christoph Mann, Tilman C. Hain, Felix M. Neubauer, Giulia Privitera, Francesco Bonaccorso, Daping Chu, Andrea C. Ferrari, and Tobias Hertel. Molar extinction coefficient of single-wall carbon nanotubes. The Journal of Physical Chemistry C, 115(30):14682–14686, 2011. doi:10.1021/jp205289h.

143

Stéphane Berciaud, Laurent Cognet, and Brahim Lounis. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. Physical review letters, 101(7):077402, 2008. doi:10.1103/PhysRevLett.101.077402.

144

Christoph Mann and Tobias Hertel. 13 nm exciton size in (6,5) single-wall carbon nanotubes. The Journal of Physical Chemistry Letters, 7(12):2276–2280, 2016. doi:10.1021/acs.jpclett.6b00797.

145

Daniel Schilling, Christoph Mann, Pascal Kunkel, Friedrich Schöppler, and Tobias Hertel. Ultrafast spectral exciton diffusion in single-wall carbon nanotubes studied by time-resolved hole burning. The Journal of Physical Chemistry C, 119(42):24116–24123, 2015. doi:10.1021/acs.jpcc.5b06865.

146

Larry Lüer, Sajjad Hoseinkhani, Dario Polli, Jared Crochet, Tobias Hertel, and Guglielmo Lanzani. Size and mobility of excitons in (6, 5) carbon nanotubes. Nature Physics, 5(1):54–58, 2009. doi:10.1038/nphys1149.

147

Carsten Georgi, Nicolai Hartmann, Tobias Gokus, Alexander A. Green, Mark C. Hersam, and Achim Hartschuh. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes. Chemphyschem, 9(10):1460–1464, 2008. doi:10.1002/cphc.200800179.

148

Laurent Cognet, Dmitri A. Tsyboulski, John-David R. Rocha, Condell D. Doyle, James M. Tour, and Weisman, R. Bruce. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science, 316(5830):1465–1468, 2007. doi:10.1126/science.1141316.

149

Yuhei Miyauchi, Munechiyo Iwamura, Shinichiro Mouri, Tadashi Kawazoe, Motoichi Ohtsu, and Kazunari Matsuda. Brightening of excitons in carbon nanotubes on dimensionality modification. Nature Photonics, 7(9):715–719, 2013. doi:10.1038/nphoton.2013.179.

150

Christoph Mann. Exzitonengröße und -dynamik in (6,5)-Kohlenstoffnanoröhren : Transiente Absorptions- und Photolumineszenzmessungen. PhD thesis, Universität Würzburg, Würzburg, 2015. URL: https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-123407.

151

Jacques Lefebvre and Paul Finnie. Excited excitonic states in single-walled carbon nanotubes. Nano Letters, 8(7):1890–1895, 2008. doi:10.1021/nl080518h.

152

Wei Ting Chen, Mohammadreza Khorasaninejad, Alexander Y. Zhu, Jaewon Oh, Robert C. Devlin, Aun Zaidi, and Federico Capasso. Generation of wavelength-independent subwavelength bessel beams using metasurfaces. Light, science & applications, 6(5):e16259, 2017. doi:10.1038/lsa.2016.259.

153

Z. Bouchal, J. Wagner, and M. Chlup. Self-reconstruction of a distorted nondiffracting beam. Optics Communications, 151(4-6):207–211, 1998. doi:10.1016/S0030-4018(98)00085-6.

154

Durnin, Miceli, and Eberly. Diffraction-free beams. Physical review letters, 58(15):1499–1501, 1987. doi:10.1103/PhysRevLett.58.1499.

155

Tilman Christian Hain. Entwicklung eines experimentellen Aufbaus zur Charakterisierung nanoskaliger Systeme mittels Fluoreszenzspektroskopie und -mikroskopie. PhD thesis, Universität Würzburg, Würzburg, 2015.

156

Jacques Lefebvre, David G. Austing, Jeffery Bond, and Paul Finnie. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Letters, 6(8):1603–1608, 2006. doi:10.1021/nl060530e.

157

S. Reich, C. Thomsen, and P. Ordejón. Electronic band structure of isolated and bundled carbon nanotubes. Physical Review B, 65(15):2506, 2002. doi:10.1103/PhysRevB.65.155411.

158

Feng Wang, Matthew Y. Sfeir, Limin Huang, X. M. Henry Huang, Yang Wu, Jaehee Kim, James Hone, Stephen O’Brien, Louis E. Brus, and Tony F. Heinz. Interactions between individual carbon nanotubes studied by rayleigh scattering spectroscopy. Physical review letters, 96(16):167401, 2006. doi:10.1103/PhysRevLett.96.167401.

159

Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki, T. Mizutani, J. Jiang, and S. Maruyama. Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chemical Physics Letters, 442(4-6):394–399, 2007. doi:10.1016/j.cplett.2007.06.018.

160

Anni J. Siitonen, Dmitri A. Tsyboulski, Sergei M. Bachilo, and Weisman, R. Bruce. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions. Nano Letters, 10(5):1595–1599, 2010. doi:10.1021/nl9039845.

161

Keith Bradley, Jean-Christophe P. Gabriel, Mikhail Briman, Alexander Star, and George Grüner. Charge transfer from ammonia physisorbed on nanotubes. Physical review letters, 91(21):218301, 2003. doi:10.1103/PhysRevLett.91.218301.

162

Kong, Franklin, Zhou, Chapline, Peng, Cho, and Dai. Nanotube molecular wires as chemical sensors. Science (New York, N.Y.), 287(5453):622–625, 2000. doi:10.1126/science.287.5453.622.

163

Jean-Joseph Adjizian, Radouane Leghrib, Antal A. Koos, Irene Suarez-Martinez, Alison Crossley, Philipp Wagner, Nicole Grobert, Eduard Llobet, and Christopher P. Ewels. Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon, 66:662–673, 2014. doi:10.1016/j.carbon.2013.09.064.

164

Jing Kong and Hongjie Dai. Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. Journal of Physical Chemistry B, 105(15):2890–2893, 2001. doi:10.1021/jp0101312.

165

Collins, Bradley, Ishigami, and Zettl. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287(5459):1801–1804, 2000. doi:10.1126/science.287.5459.1801.

166

Hendrik Ulbricht, Gunnar Moos, and Tobias Hertel. Physisorption of molecular oxygen on single-wall carbon nanotube bundles and graphite. Physical Review B, 2002. doi:10.1103/PhysRevB.66.075404.

167

Hendrik Ulbricht, Jennah Kriebel, Gunnar Moos, and Tobias Hertel. Desorption kinetics and interaction of xe with single-wall carbon nanotube bundles. Chemical Physics Letters, 363(3-4):252–260, 2002. doi:10.1016/S0009-2614(02)01175-2.

168

Hugo E. Romero, Kim Bolton, Arne Rosén, and Peter C. Eklund. Atom collision-induced resistivity of carbon nanotubes. Science (New York, N.Y.), 307(5706):89–93, 2005. doi:10.1126/science.1102004.

169

Takushi Uda, Akihiro Ishii, and Yuichiro K. Kato. Single carbon nanotubes as ultrasmall all-optical memories. ACS Photonics, 5(2):559–565, 2017. doi:10.1021/acsphotonics.7b01104.

170

Shohei Chiashi, Satoshi Watanabe, Tateki Hanashima, and Yoshikazu Homma. Influence of gas adsorption on optical transition energies of single-walled carbon nanotubes. Nano Letters, 8(10):3097–3101, 2008. doi:10.1021/nl801074j.

171

T. P. Chua, M. Mariatti, A. Azizan, and A. A. Rashid. Surface functionalization of multi-walled carbon nanotubes via electron reduction of benzophenone by potassium metal. Journal of Alloys and Compounds, 480(2):534–536, 2009. doi:10.1016/j.jallcom.2009.01.093.

172

Lei An, Qiang Fu, Chenguang Lu, and Jie Liu. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. Journal of the American Chemical Society, 126(34):10520–10521, 2004. doi:10.1021/ja046482m.

173

Nanda Gopal Sahoo, Henry Kuo Feng Cheng, Hongqian Bao, Yongzheng Pan, Lin Li, and Siew Hwa Chan. Covalent functionalization of carbon nanotubes for ultimate interfacial adhesion to liquid crystalline polymer. Soft Matter, 7(19):9505, 2011. doi:10.1039/c1sm05360d.

174

Shadpour Mallakpour and Samaneh Soltanian. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Advances, 6(111):109916–109935, 2016. doi:10.1039/C6RA24522F.

175

P. Finnie, Y. Homma, and J. Lefebvre. Band-gap shift transition in the photoluminescence of single-walled carbon nanotubes. Physical review letters, 2005. doi:10.1103/PhysRevLett.94.247401.

176

Yutaka Ohno, Shinya Iwasaki, Yoichi Murakami, Shigeru Kishimoto, Shigeo Maruyama, and Takashi Mizutani. Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Physical Review B, 2006. doi:10.1103/PhysRevB.73.235427.

177

Tsuneya Ando. Environment effects on excitons in semiconducting carbon nanotubes. Journal of the Physics Society Japan, 79(2):024706, 2010. doi:10.1143/JPSJ.79.024706.

178

Vasili Perebeinos, J. Tersoff, and Phaedon Avouris. Scaling of excitons in carbon nanotubes. Physical review letters, 92(25 Pt 1):257402, 2004. doi:10.1103/PhysRevLett.92.257402.

179

Yoshikazu Homma, Shohei Chiashi, Takahiro Yamamoto, Kaname Kono, Daiki Matsumoto, Junpei Shitaba, and Shintaroh Sato. Photoluminescence measurements and molecular dynamics simulations of water adsorption on the hydrophobic surface of a carbon nanotube in water vapor. Physical review letters, 110(15):157402, 2013. doi:10.1103/PhysRevLett.110.157402.

180

Juan G. Duque, Christopher E. Hamilton, Gautam Gupta, Scott A. Crooker, Jared J. Crochet, Aditya Mohite, Han Htoon, Kimberly A. DeFriend Obrey, Andrew M. Dattelbaum, and Stephen K. Doorn. Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments. ACS nano, 5(8):6686–6694, 2011. doi:10.1021/nn202225k.

181

Mingyuan Huang, Yang Wu, Bhupesh Chandra, Hugen Yan, Yuyao Shan, Tony F. Heinz, and James Hone. Direct measurement of strain-induced changes in the band structure of carbon nanotubes. Physical Review Letters, 100(13):136803, 2008. doi:10.1103/PhysRevLett.100.136803.

182

D. E. Milkie, C. Staii, S. Paulson, E. Hindman, A. T. Johnson, and J. M. Kikkawa. Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes. Nano Letters, 5(6):1135–1138, 2005. doi:10.1021/nl050688j.

183

Kyung Ah Park, Kwanyong Seo, and Young Hee Lee. Adsorption of atomic hydrogen on single-walled carbon nanotubes. The journal of physical chemistry. B, 109(18):8967–8972, 2005. doi:10.1021/jp0500743.

184

Kotaro Nagatsu, Shohei Chiashi, Satoru Konabe, and Yoshikazu Homma. Brightening of triplet dark excitons by atomic hydrogen adsorption in single-walled carbon nanotubes observed by photoluminescence spectroscopy. Physical review letters, 105(15):157403, 2010. doi:10.1103/PhysRevLett.105.157403.

185

T. W. Ebbesen and T. Takada. Topological and sp3 defect structures in nanotubes. Carbon, 33(7):973–978, 1995. doi:10.1016/0008-6223(95)00025-9.

186

Guangyu Zhang, Pengfei Qi, Xinran Wang, Yuerui Lu, David Mann, Xiaolin Li, and Hongjie Dai. Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. Journal of the American Chemical Society, 128(18):6026–6027, 2006. doi:10.1021/ja061324b.

187

L. Backman. A novel co/sio2 catalyst for hydrogenation. Catalysis Today, 43(1-2):11–19, 1998. doi:10.1016/S0920-5861(98)00132-1.

188

H. Qian and E. L. Elson. On the analysis of high order moments of fluorescence fluctuations. Biophysical Journal, 57(2):375–380, 1990. doi:10.1016/S0006-3495(90)82539-X.

189

Rafael Brüschweiler and Fengli Zhang. Covariance nuclear magnetic resonance spectroscopy. Journal of Chemical Physics, 120(11):5253–5260, 2004. doi:10.1063/1.1647054.

190

Martin Jaeger and Ruud L.E.G. Aspers. Covariance nmr and small molecule applications. In Graham A. Webb, editor, Annual Reports on NMR Spectroscopy, volume 83, pages 271–349. Elsevier, 2014. doi:10.1016/B978-0-12-800183-7.00005-8.

191

Jason K. Streit, Sergei M. Bachilo, Stephen R. Sanchez, Ching-Wei Lin, and Weisman, R. Bruce. Variance spectroscopy. The journal of physical chemistry letters, 6(19):3976–3981, 2015. doi:10.1021/acs.jpclett.5b01835.

192

Stephen R. Sanchez, Sergei M. Bachilo, Yara Kadria-Vili, Ching-Wei Lin, and Weisman, R. Bruce. (n,m)-specific absorption cross sections of single-walled carbon nanotubes measured by variance spectroscopy. Nano letters, 16(11):6903–6909, 2016. doi:10.1021/acs.nanolett.6b02819.

193

Stephen R. Sanchez, Sergei M. Bachilo, Yara Kadria-Vili, and Weisman, R. Bruce. Skewness analysis in variance spectroscopy measures nanoparticle individualization. The Journal of Physical Chemistry Letters, 8(13):2924–2929, 2017. doi:10.1021/acs.jpclett.7b01184.

194

S. D. M. Brown, A. Jorio, M. S. Dresselhaus, and G. Dresselhaus. Observations of the d -band feature in the raman spectra of carbon nanotubes. Physical Review B, 64(7):1126, 2001. doi:10.1103/PhysRevB.64.073403.

195

Yara Kadria-Vili, Sergei M. Bachilo, Jeffrey L. Blackburn, and Weisman, R. Bruce. Photoluminescence side band spectroscopy of individual single-walled carbon nanotubes. The Journal of Physical Chemistry C, 120(41):23898–23904, 2016. doi:10.1021/acs.jpcc.6b08768.

196

Nicolai F. Hartmann, Kirill A. Velizhanin, Erik H. Haroz, Mijin Kim, Xuedan Ma, YuHuang Wang, Han Htoon, and Stephen K. Doorn. Photoluminescence dynamics of aryl sp(3) defect states in single-walled carbon nanotubes. ACS nano, 10(9):8355–8365, 2016. doi:10.1021/acsnano.6b02986.

197

Hyejin Kwon, Mijin Kim, Brendan Meany, Yanmei Piao, Lyndsey R. Powell, and YuHuang Wang. Optical probing of local ph and temperature in complex fluids with covalently functionalized, semiconducting carbon nanotubes. The Journal of Physical Chemistry C, 119(7):3733–3739, 2015. doi:10.1021/jp509546d.

198

Yanmei Piao, Brendan Meany, Lyndsey R. Powell, Nicholas Valley, Hyejin Kwon, George C. Schatz, and YuHuang Wang. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nature chemistry, 5(10):840–845, 2013. doi:10.1038/nchem.1711.

199

Saunab Ghosh, Sergei M. Bachilo, Rebecca A. Simonette, Kathleen M. Beckingham, and Weisman, R. Bruce. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 330(6011):1656–1659, 2010. doi:10.1126/science.1196382.

200

Amanda R. Amori, Jamie E. Rossi, Brian J. Landi, and Todd D. Krauss. Defects enable dark exciton photoluminescence in single-walled carbon nanotubes. The Journal of Physical Chemistry C, 122(6):3599–3607, 2018. doi:10.1021/acs.jpcc.7b10565.

201

Jayakumar Balakrishnan, Gavin Kok Wai Koon, Manu Jaiswal, Castro Neto, A. H., and Barbaros Özyilmaz. Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Physics, 9(5):284–287, 2013. doi:10.1038/nphys2576.

202

Dmitry V. Kazachkin, Yoshifumi Nishimura, Stephan Irle, Xue Feng, Radisav Vidic, and Eric Borguet. Temperature and pressure dependence of molecular adsorption on single wall carbon nanotubes and the existence of an “adsorption/desorption pressure gap”. Carbon, 48(7):1867–1875, 2010. doi:10.1016/j.carbon.2009.11.018.

203

Jonathan C. Noe, Manuel Nutz, Jonathan Reschauer, Nicolas Morell, Ioannis Tsioutsios, Antoine Reserbat-Plantey, Kenji Watanabe, Takashi Taniguchi, Adrian Bachtold, and Alexander Högele. Environmental electrometry with luminescent carbon nanotubes. Nano letters, 18(7):4136–4140, 2018. doi:10.1021/acs.nanolett.8b00871.

204

Achim Hartschuh, Hermeneglido N. Pedrosa, Lukas Novotny, and Todd D. Krauss. Simultaneous fluorescence and raman scattering from single carbon nanotubes. Science, 301(5638):1354–1356, 2003. doi:10.1126/science.1087118.

205

Arthur I. Vogel and B. S. Furniss. Vogel’s textbook of practical organic chemistry. Longman Scientific & Technical, 5th ed. edition, 1989. ISBN 9780582462366.

206

Hang Woo Lee, Yeohoon Yoon, Steve Park, Joon Hak Oh, Sanghyun Hong, Luckshitha S. Liyanage, Huiliang Wang, Satoshi Morishita, Nishant Patil, Young Jun Park, Jong Jin Park, Andrew Spakowitz, Giulia Galli, Francois Gygi, Philip H-S Wong, Jeffrey B-H Tok, Jong Min Kim, and Zhenan Bao. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature communications, 2:541, 2011. doi:10.1038/ncomms1545.

207

Yutaka Ohno, Shinya Iwasaki, Yoichi Murakami, Shigeru Kishimoto, Shigeo Maruyama, and Takashi Mizutani. Excitonic transition energies in single-walled carbon nanotubes: dependence on environmental dielectric constant. physica status solidi (b), 244(11):4002–4005, 2007. doi:10.1002/pssb.200776124.

208

Tobias Hertel. Photophysics. In Dirk M. Guldi and Nazario Martn, editors, Carbon Nanotubes and Related Structures, pages 77–101. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010. doi:10.1002/9783527629930.ch4.

209

Tetsuo Ogawa and Toshihide Takagahara. Interband absorption spectra and sommerfeld factors of a one-dimensional electron-hole system. Physical Review B, 43(17):14325–14328, 1991. doi:10.1103/PhysRevB.43.14325.

210

Huiliang Wang, Bing Hsieh, Gonzalo Jiménez-Osés, Peng Liu, Christopher J. Tassone, Ying Diao, Ting Lei, Kendall N. Houk, and Zhenan Bao. Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics. Small, 11(1):126–133, 2015. doi:10.1002/smll.201401890.

211

Long Qian, Wenya Xu, XiaoFeng Fan, Chao Wang, Jianhui Zhang, Jianwen Zhao, and Zheng Cui. Electrical and photoresponse properties of printed thin-film transistors based on poly(9,9-dioctylfluorene- co -bithiophene) sorted large-diameter semiconducting carbon nanotubes. The Journal of Physical Chemistry C, 117(35):18243–18250, 2013. doi:10.1021/jp4055022.

212

J. Lefebvre, J. M. Fraser, P. Finnie, and Y. Homma. Photoluminescence from an individual single-walled carbon nanotube. Physical Review B, 69(7):593, 2004. doi:10.1103/PhysRevB.69.075403.

213

Imge Namal. Fabrication and Optical and Electronic Characterization of Conjugated Polymer-Stabilized Semiconducting Single-Wall Carbon Nanotubes in Dispersions and Thin Films. Universität Würzburg, Würzburg, 2018.

214

Kazunari Matsuda, Tadashi Inoue, Yoichi Murakami, Shigeo Maruyama, and Yoshihiko Kanemitsu. Exciton dephasing and multiexciton recombinations in a single carbon nanotube. Physical Review B, 77(3):033406, 2008. doi:10.1103/PhysRevB.77.033406.

215

Xu Wang, Jack A. Alexander-Webber, Wei Jia, Benjamin P. L. Reid, Samuel D. Stranks, Mark J. Holmes, Christopher C. S. Chan, Chaoyong Deng, Robin J. Nicholas, and Robert A. Taylor. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Scientific reports, 6(1):719, 2016. doi:10.1038/srep37167.

216

O. N. Torrens, M. Zheng, and J. M. Kikkawa. Energy of k-momentum dark excitons in carbon nanotubes by optical spectroscopy. Physical review letters, 101(15):157401, 2008. doi:10.1103/PhysRevLett.101.157401.

217

Ming Zheng, Anand Jagota, Ellen D. Semke, Bruce A. Diner, Robert S. McLean, Steve R. Lustig, Raymond E. Richardson, and Nancy G. Tassi. Dna-assisted dispersion and separation of carbon nanotubes. Nature materials, 2(5):338–342, 2003. doi:10.1038/nmat877.

218

Kerstin Müller. tba. PhD thesis, Uni Würzburg, Würzburg, 2019 (tbp).

219

Frank Brunecker. Kohlenstoffnanorohr-Komplexe: Adsorption und Desorption von (Bio-)Polymeren. PhD thesis, Uni Würzburg, Würzburg, 2015.

220

P. Alston Steiner and W. Gordy. Precision measurement of dipole moments and other spectral constants of normal and deuterated methyl fluoride and methyl cyanide. Journal of Molecular Spectroscopy, 21(1-4):291–301, 1966. doi:10.1016/0022-2852(66)90152-4.

221

Po-Yu Yang, Shin-Pon Ju, Hua-Sheng Hsieh, and Jenn-Sen Lin. The diffusion behavior and capacitance of tetraethylammonium/tetrafluoroborate ions in acetonitrile with different molar concentrations: a molecular dynamics study. RSC Advances, 7(87):55044–55050, 2017. doi:10.1039/c7ra09465e.

222

M. Yoshida, A. Popert, and Y. K. Kato. Gate-voltage induced trions in suspended carbon nanotubes. Physical Review B, 2016. doi:10.1103/physrevb.93.041402.

223

Don N. Futaba, Kenji Hata, Takeo Yamada, Tatsuki Hiraoka, Yuhei Hayamizu, Yozo Kakudate, Osamu Tanaike, Hiroaki Hatori, Motoo Yumura, and Sumio Iijima. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature materials, 5(12):987–994, 2006. doi:10.1038/nmat1782.

224

Yuhei Miyauchi, Mototeru Oba, and Shigeo Maruyama. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Physical Review B, 2006. doi:10.1103/PhysRevB.74.205440.

225

Seiji Uryu and Tsuneya Ando. Exciton absorption of perpendicularly polarized light in carbon nanotubes. Physical Review B, 74(15):107, 2006. doi:10.1103/PhysRevB.74.155411.

226

Yoichi Murakami, Benjamin Lu, Said Kazaoui, Nobutsugu Minami, Tatsuya Okubo, and Shigeo Maruyama. Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels. Physical Review B, 2009. doi:10.1103/PhysRevB.79.195407.

227

Vasili Perebeinos, J. Tersoff, and Phaedon Avouris. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Physical Review Letters, 94(2):027402, 2005. doi:10.1103/PhysRevLett.94.027402.

228

Jeffrey L. Blackburn, Josh M. Holt, Veronica M. Irurzun, Daniel E. Resasco, and Garry Rumbles. Confirmation of k-momentum dark exciton vibronic sidebands using 13c-labeled, highly enriched (6,5) single-walled carbon nanotubes. Nano letters, 12(3):1398–1403, 2012. doi:10.1021/nl204072x.

229

T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato. Electric-field induced activation of dark excitonic states in carbon nanotubes. Nano letters, 16(4):2278–2282, 2016. doi:10.1021/acs.nanolett.5b04595.

230

Peter Linstrom. Nist chemistry webbook, nist standard reference database 69. doi:10.18434/T4D303.

231

Krzysztof Bernard Beć, Daniel Karczmit, Michał Kwaśniewicz, Yukihiro Ozaki, and Mirosław Antoni Czarnecki. Overtones of νc≡n vibration as a probe of structure of liquid ch 3 cn, cd 3 cn, and ccl 3 cn: combined infrared, near-infrared, and raman spectroscopic studies with anharmonic density functional theory calculations. The Journal of Physical Chemistry A, 123(20):4431–4442, 2019. doi:10.1021/acs.jpca.9b02170.

232

L. Nitin Seetohul, Zulfiqur Ali, and Meez Islam. Liquid-phase broadband cavity enhanced absorption spectroscopy (bbceas) studies in a 20 cm cell. The Analyst, 134(9):1887–1895, 2009. doi:10.1039/b907316g.

233

Vitaly Chaban. Filling carbon nanotubes with liquid acetonitrile. Chemical Physics Letters, 496(1-3):50–55, 2010. doi:10.1016/j.cplett.2010.07.003.

234

Yutaka Maniwa, Hiromichi Kataura, Masatoshi Abe, Akiko Udaka, Shinzo Suzuki, Yohji Achiba, Hiroshi Kira, Kazuyuki Matsuda, Hiroaki Kadowaki, and Yutaka Okabe. Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chemical Physics Letters, 401(4-6):534–538, 2005. doi:10.1016/j.cplett.2004.11.112.

235

W. Wenseleers, S. Cambré, J. Čulin, A. Bouwen, and E. Goovaerts. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: characterizing tube opening by raman spectroscopy. Advanced Materials, 19(17):2274–2278, 2007. doi:10.1002/adma.200700773.

236

Sofie Cambré, Bob Schoeters, Sten Luyckx, Etienne Goovaerts, and Wim Wenseleers. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Physical Review Letters, 104(20):207401, 2010. doi:10.1103/PHYSREVLETT.104.207401.

237

Sofie Cambré, Silvia M. Santos, Wim Wenseleers, Ahmad R. T. Nugraha, Riichiro Saito, Laurent Cognet, and Brahim Lounis. Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. ACS Nano, 6(3):2649–2655, 2012. doi:10.1021/NN300035Y.

238

Jhinhwan Lee, H. Kim, S-J Kahng, G. Kim, Y-W Son, J. Ihm, H. Kato, Z. W. Wang, T. Okazaki, H. Shinohara, and Young Kuk. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature, 415(6875):1005–1008, 2002. doi:10.1038/4151005a.

239

Sofie Cambré, Jochen Campo, Charlie Beirnaert, Christof Verlackt, Pegie Cool, and Wim Wenseleers. Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. Nature nanotechnology, 10(3):248–252, 2015. doi:10.1038/nnano.2015.1.

240

Thomas A. Ford and Leslie Glasser. Ab initio calculations of the structural, energetic, and vibrational properties of some hydrogen bonded and van der waals dimers. part 4. the acetonitrile dimer. International Journal of Quantum Chemistry, 84(2):226–240, 2001. doi:10.1002/qua.1325.

241

M. Szlachta and P. Wójtowicz. Adsorption of methylene blue and congo red from aqueous solution by activated carbon and carbon nanotubes. Water science and technology : a journal of the International Association on Water Pollution Research, 68(10):2240–2248, 2013. doi:10.2166/wst.2013.487.

242

Bruce R. Weisman and Sergei M. Bachilo. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical kataura plot. Nano Letters, 3(9):1235–1238, 2003. doi:10.1021/nl034428i.

243

Valerie C. Moore, Michael S. Strano, Erik H. Haroz, Robert H. Hauge, Richard E. Smalley, Judith Schmidt, and Yeshayahu Talmon. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters, 3(10):1379–1382, 2003. doi:10.1021/nl034524j.

244

Tsuyohiko Fujigaya and Naotoshi Nakashima. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Science and Technology of Advanced Materials, 16(2):024802, 2015. doi:10.1088/1468-6996/16/2/024802.

245

Jose M. Lobez and Ali Afzali. Surface-selective directed assembly of carbon nanotubes using side-chain functionalized poly(thiophene)s. Chemistry of Materials, 25(18):3662–3666, 2013. doi:10.1021/cm401881w.

246

Ninette Stürzl, Frank Hennrich, Sergei Lebedkin, and Manfred M. Kappes. Near monochiral single-walled carbon nanotube dispersions in organic solvents. The Journal of Physical Chemistry C, 113(33):14628–14632, 2009. doi:10.1021/jp902788y.

247

Hiroaki Ozawa, Tsuyohiko Fujigaya, Suhee Song, Hongsuk Suh, and Naotoshi Nakashima. Different chiral selective recognition/extraction of (n,m)single-walled carbon nanotubes using copolymers carrying a carbazole or fluorene moiety. Chemistry Letters, 40(5):470–472, 2011. doi:10.1246/cl.2011.470.

248

Jorge Mario Salazar-Rios, Wytse Talsma, Vladimir Derenskyi, Widianta Gomulya, Tina Keller, Martin Fritsch, Sebastian Kowalski, Eduard Preis, Ming Wang, Sybille Allard, Guillermo Carlos Bazan, Ullrich Scherf, Maria Cristina dos Santos, and Maria Antonietta Loi. Understanding the selection mechanism of the polymer wrapping technique toward semiconducting carbon nanotubes. Small Methods, 2(4):1700335, 2018. doi:10.1002/smtd.201700335.

249

Fabien Lemasson, Nicolas Berton, Jana Tittmann, Frank Hennrich, Manfred M. Kappes, and Marcel Mayor. Polymer library comprising fluorene and carbazole homo- and copolymers for selective single-walled carbon nanotubes extraction. Macromolecules, 45(2):713–722, 2012. doi:10.1021/ma201890g.

250

Frank K. Brunecker, Friedrich Schöppler, and Tobias Hertel. Interaction of polymers with single-wall carbon nanotubes. The Journal of Physical Chemistry C, 120(18):10094–10103, 2016. doi:10.1021/acs.jpcc.6b02198.

251

Samuel D. Stranks, Anton M. R. Baker, Jack A. Alexander-Webber, Beate Dirks, and Robin J. Nicholas. Production of high-purity single-chirality carbon nanotube hybrids by selective polymer exchange. Small, 9(13):2245–2249, 2013. doi:10.1002/smll.201202434.

252

Jian Chen, Haiying Liu, Wayne A. Weimer, Mathew D. Halls, David H. Waldeck, and Gilbert C. Walker. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. Journal of the American Chemical Society, 124(31):9034–9035, 2002. doi:10.1021/ja026104m.

253

Anton V. Naumov, Saunab Ghosh, Dmitri A. Tsyboulski, Sergei M. Bachilo, and Weisman, R. Bruce. Analyzing absorption backgrounds in single-walled carbon nanotube spectra. ACS Nano, 5(3):1639–1648, 2011. doi:10.1021/nn1035922.

254

Imge Namal, Ali Can Ozelcaglayan, Yasemin Arslan Udum, and Levent Toppare. Synthesis and electrochemical characterization of fluorene and benzimidazole containing novel conjugated polymers: effect of alkyl chain length on electrochemical properties. European Polymer Journal, 49(10):3181–3187, 2013. doi:10.1016/j.eurpolymj.2013.06.016.

255

Livia N. Glanzmann, Duncan J. Mowbray, and Angel Rubio. Pfo-bpy solubilizers for swnts: modelling of polymers from oligomers. Physica Status Solidi B: Basic Solid State Physics, 251(12):2407–2412, 2014. doi:10.1002/pssb.201451171.

256

Angela Eckstein, Renata Karpicz, Ramūnas Augulis, Kipras Redeckas, Mikas Vengris, Imge Namal, Tobias Hertel, and Vidmantas Gulbinas. Excitation quenching in polyfluorene polymers bound to (6,5) single-wall carbon nanotubes. Chemical Physics, 467:1–5, 2016. doi:10.1016/j.chemphys.2015.12.006.

257

Florian Leonhard Späth. Präparation und Charakterisierung einwandiger Kohlenstoffnanorohr-Polyfluoren-Komplexe. PhD thesis, Universität Würzburg, Würzburg, 2015. URL: https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-123874.

258

James A. Barnes, Andrew R. Chi, Leonard S. Cutler, Daniel J. Healey, David B. Leeson, Thomas E. McGunigal, James A. Mullen, Warren L. Smith, Richard L. Sydnor, Robert F. C. Vessot, and Gernot M. R. Winkler. Characterization of frequency stability. IEEE Transactions on Instrumentation and Measurement, IM-20(2):105–120, 1971. doi:10.1109/TIM.1971.5570702.

259

David W. Allan. Should the classical variance be used as a basic measure in standards metrology? IEEE Transactions on Instrumentation and Measurement, IM-36(2):646–654, 1987. doi:10.1109/TIM.1987.6312761.